skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Whitham, Will"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Accurate eye tracking is crucial for gaze-dependent research, but calibrating eye trackers in subjects who cannot follow instructions, such as human infants and nonhuman primates, presents a challenge. Traditional calibration methods rely on verbal instructions, which are ineffective for these populations. To address this, researchers often use attention-grabbing stimuli in known locations; however, existing software for video-based calibration is often proprietary and inflexible. We introduce an extension to the open-source toolbox Titta—a software package integrating desktop Tobii eye trackers with PsychToolbox experiments—to facilitate custom video-based calibration. This toolbox extension offers a flexible platform for attracting attention, calibrating using flexible point selection, and validating the calibration. The toolbox has been refined through extensive use with chimpanzees, baboons, and macaques, demonstrating its effectiveness across species. Our adaptive calibration and validation procedures provide a standardized method for achieving more accurate gaze tracking, enhancing gaze accuracy across diverse species. 
    more » « less
  2. Fogt, Nick (Ed.)
    Primates can rapidly detect potential predators and modify their behavior based on the level of risk. The gaze direction of predators is one feature that primates can use to assess risk levels: recognition of a predator’s direct stare indicates to prey that it has been detected and the level of risk is relatively high. Predation has likely shaped visual attention in primates to quickly assess the level of risk but we know little about the constellation of low-level (e.g., contrast, color) and higher-order (e.g., category membership, perceived threat) visual features that primates use to do so. We therefore presented human and chimpanzee (Pan troglodytes) participants with photographs of potential predators (lions) and prey (impala) while we recorded their overt attention with an eye-tracker. The gaze of the predators and prey was either directed or averted. We found that both humans and chimpanzees visually fixated the eyes of predators more than those of prey. In addition, they directed the most attention toward the eyes of directed (rather than averted) predators. Humans, but not chimpanzees, gazed at the eyes of the predators and prey more than other features. Importantly, low-level visual features of the predators and prey did not provide a good explanation of the observed gaze patterns. 
    more » « less
  3. Abstract Chimpanzee ( Pan troglodytes ) sclera appear much darker than the white sclera of human eyes, to such a degree that the direction of chimpanzee gaze may be concealed from conspecifics. Recent debate surrounding this topic has produced mixed results, with some evidence suggesting that (1) primate gaze is indeed concealed from their conspecifics, and (2) gaze colouration is among the suite of traits that distinguish uniquely social and cooperative humans from other primates (the cooperative eye hypothesis). Using a visual modelling approach that properly accounts for specific-specific vision, we reexamined this topic to estimate the extent to which chimpanzee eye coloration is discriminable. We photographed the faces of captive chimpanzees and quantified the discriminability of their pupil, iris, sclera, and surrounding skin. We considered biases of cameras, lighting conditions, and commercial photography software along with primate visual acuity, colour sensitivity, and discrimination ability. Our visual modeling of chimpanzee eye coloration suggests that chimpanzee gaze is visible to conspecifics at a range of distances (within approximately 10 m) appropriate for many species-typical behaviours. We also found that chimpanzee gaze is discriminable to the visual system of primates that chimpanzees prey upon, Colobus monkeys. Chimpanzee sclera colour does not effectively conceal gaze, and we discuss this result with regard to the cooperative eye hypothesis, the evolution of primate eye colouration, and methodological best practices for future primate visual ecology research. 
    more » « less
  4. Eye gaze is an important source of information for animals, implicated in communication, cooperation, hunting and antipredator behaviour. Gaze perception and its cognitive underpinnings are much studied in primates, but the specific features that are used to estimate gaze can be difficult to isolate behaviourally. We photographed 13 laboratory-housed tufted capuchin monkeys ( Sapajus [Cebus] apella ) to quantify chromatic and achromatic contrasts between their iris, pupil, sclera and skin. We used colour vision models to quantify the degree to which capuchin eye gaze is discriminable to capuchins, their predators and their prey. We found that capuchins, regardless of their colour vision phenotype, as well as their predators, were capable of effectively discriminating capuchin gaze across ecologically relevant distances. Their prey, in contrast, were not capable of discriminating capuchin gaze, even under relatively ideal conditions. These results suggest that specific features of primate eyes can influence gaze perception, both within and across species. 
    more » « less